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Abstract:  

Renewable energy from wind is the safest form of energy. Wind turbine based energy generators have the potential to generate high 

amount of electric power if there is a proper 

wind velocity and control mechanisms. This can certainly reduce the dependency on solar photovoltaic based energy systems, which 

needs huge space to install the solar photovoltaic panels. However, the output power of wind turbine is affected by the uncertain wind 

velocity. The output mechanical power has to be properly controlled. Hence, the wind energy system efficacy depends on how well this 

uncertainty is addressed. The major challenge is to design and control the wind turbine systems that has a suitable mediator between the 

power generator and the load, which counters the damage to the load due to variable voltages produced by the varying wind velocity. 

Keeping this in view, this paper implements all-important PID control design methods for wind energy application and recommends the 

most suitable method for its controller design. The overall analysis is presented via detailed quantitative results that are evaluated with 

the help of time-domain performance index parameters 

Introduction  

The overwhelming reliance of the global economy 

on fossil fuels and environmental concerns have 

prompted a shift in attention toward 

nonconventional means of producing power. Wind 

power is the most rapidly expanding renewable 

energy source in this context of increasing energy 

market diversity [1]. For a long time, the most 

common kind of wind turbine was one with a 

simple control system designed to save operating 

expenses and upkeep [1]. Electronic converters and 

mechanical actuators have become more popular as 

a result of the growing size of turbines and the 

rising penetration of wind energy into the utility 

networks of leading nations. In order to actively 

regulate the absorbed energy, these devices 

integrate additional design degrees of freedom. As 

an interface to the power grid, static converters 

allow for variable-speed operation up to the rated 

speed. Variable speed control seems to be a viable 

alternative for improving the functioning of wind 

turbines in the face of environmental disturbances 

including random wind variations, wind shear, and 

tower shadows [2]. From a control system 

perspective, wind energy conversion systems 

provide unique difficulties.  Due to their nonlinear 

nature and susceptibility to significant cyclic 

disturbances, wind turbines may experience 

excitation of the weakly damped vibration modes 

of the drive-train and tower (see [1,3]). 

Furthermore, because to the unique working 

circumstances, it is challenging to construct 

mathematical models that effectively represent the 

dynamic behaviour of wind turbines.  
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The present trend toward bigger and more 

adaptable wind turbines makes this work much 

more complex. Robust control solutions may help 

mitigate the effects of inaccurate models by 

guaranteeing stability and specific performance 

characteristics in spite of model errors. Turbines 

with variable speed and pitch increase the 

complexity of the control difficulties, as shown in 

[4-6]. Multiple controls are required for optimal 

performance of this kind of turbine (see to [7,8] for 

details). In this study, we suggest a novel approach 

to controlling horizontal-axis wind turbines 

(HAWTs) that may vary both in speed and pitch. 

This regulation is accomplished by a proportional 

integral (PI) controller for the blade pitch angle and 

a nonlinear dynamic chattering torque control 

approach. The new control mechanism permits a 

fast change in the amount of electricity produced 

by the wind turbines. This suggests that WT power 

generation may be adjusted up or down depending 

on network demand for electricity. All other state 

variables, such as the rotational speeds of the 

turbines and generators, as well as the smooth and 

appropriate development of the control variables, 

guarantee this electrical power tracking. 

Modelling of Systems 

A rotor assembly, transmission, and generator 

make up the wind turbine. The kinetic energy of the 

wind is converted into mechanical power by the 

rotor of the wind turbine. Condensed version of 

thein [12-14], a rotor was used. The following 

equation describes the relationship between wind 

speed and the resulting mechanical power in this 

model. 

 

where ρ is the air density, R is the radius of the 

rotor, u is the wind speed, Cp is the power 

coefficient of the wind turbine, β is the pitch angle, 

and λ is the tip-speed ratio given by  

 

where ωr is the rotor speed. Thus, changes in the 

wind speed or rotor speed produce changes in the 

tip-speed ratio, leading to power coefficient 

variation; thus, the generated power is affected. 

The aerodynamic torque coefficient is related to the 

power coefficient as follows,  

 

the aerodynamic torque expression is described as 

 

where  

 

For a perfectly rigid low-speed shaft, a single-mass 

model for a wind turbine can be considered  

 

 where Jt is the turbine total inertia (kg m2 ), Kt is 

the turbine total external damping (Nm rad−1 s), Ta 

is the aerodynamic torque (Nm), and Tg is the 

generator torque (Nm). The scheme of the one-

mass model is provided in Figure 1. 

 

Figure 1. One-mass model of a wind turbine. 

The Short Synopsis of a Simulator 

(FAST)  

When it comes to calculating the severe and fatigue 

loads of two- and three-bladed HAWTs, the FAST 

algorithm [9] is the gold standard aeroelastic 

simulator. Because Germanischer Lloyd 

Windemere examined this simulator in 2005 and 

considered it appropriate for the simulation of 

onshore wind turbine loads for design and 

certification [18], it was selected for validation. 

The complex turbine controls may be implemented 

in Simulink's user-friendly block diagram format 

thanks to the MATLABR interface built between 

FAST and Simulink. To include the FAST motion 

equations (in an S-function), the FAST subroutines 

are coupled using a MATLAB standard gateway 

subroutine. This provides a huge amount of leeway 

for adjusting the simulated controls of a wind 

turbine. The full nonlinear aeroelastic wind turbine 



equations of motion are accessible in FAST, 

allowing for their use in the design and simulation 

of control modules for the generator torque, nacelle 

yaw, and pitch in the Simulink environment. 

Blocks that integrate accelerations in different 

degrees of freedom to get velocities and 

displacements are included in the wind turbine 

block, along with an S-function block containing 

the FAST motion equations. This necessitates 

writing the equations of motion in the FAST S-

function and then using one of Simulink's solvers to 

get the answers.  

PSO 

In computational science, particle swarm 

optimization (PSO)[1] is a computational method 

that optimizes a problem by iteratively trying to 

improve a candidate solution with regard to a given 

measure of quality. It solves a problem by having a 

population of candidate solutions, here dubbed 

particles, and moving these particles around in the 

search-space according to simple mathematical 

formula over the particle's position and velocity. 

Each particle's movement is influenced by its local 

best known position, but is also guided toward the 

best known positions in the search-space, which are 

updated as better positions are found by other 

particles. This is expected to move the swarm 

toward the best solutions. PSO is originally 

attributed to Kennedy, Eberhart and Shi[2][3] and 

was first intended for simulating social 

behaviour,[4] as a stylized representation of the 

movement of organisms in a bird flock or fish 

school. The algorithm was simplified and it was 

observed to be performing optimization. The book 

by Kennedy and Eberhart[5] describes many 

philosophical aspects of PSO and swarm 

intelligence. An extensive survey of PSO 

applications is made by Poli.[6][7] Recently, a 

comprehensive review on theoretical and 

experimental works on PSO has been published by 

Bonyadi and Michalewicz.[1] 

 

PSO is a metaheuristic as it makes few or no 

assumptions about the problem being optimized 

and can search very large spaces of candidate 

solutions. Also, PSO does not use the gradient of 

the problem being optimized, which means PSO 

does not require that the optimization problem be 

differentiable as is required by classic optimization 

methods such as gradient descent and quasi-newton 

methods. However, metaheuristics such as PSO do 

not guarantee an optimal solution is ever found 

Neighbourhoods and topologies 

The topology of the swarm defines the subset of 

particles with which each particle can exchange 

information.[28] The basic version of the algorithm 

uses the global topology as the swarm 

communication structure.[10] This topology allows 

all particles to communicate with all the other 

particles, thus the whole swarm share the same best 

position g from a single particle. However, this 

approach might lead the swarm to be trapped into a 

local minimum,[29] thus different topologies have 

been used to control the flow of information among 

particles. For instance, in local topologies, particles 

only share information with a subset of 

particles.[10] This subset can be a geometrical 

one[30] – for example "the m nearest particles" – 

or, more often, a social one, i.e. a set of particles 

that is not depending on any distance. In such 

cases, the PSO variant is said to be local best (vs 

global best for the basic PSO). 

A commonly used swarm topology is the ring, in 

which each particle has just two neighbours, but 

there are many others.[10] The topology is not 

necessarily static. In fact, since the topology is 

related to the diversity of communication of the 

particles,[31] some efforts have been done to create 

adaptive topologies (SPSO,[32] APSO,[33] 

stochastic star,[34] TRIBES,[35] Cyber 

Swarm,[36] and C-PSO[37]) 

Inner workings 

There are several schools of thought as to why and 

how the PSO algorithm can perform optimization. 

A common belief amongst researchers is that the 

swarm behaviour varies between exploratory 

behaviour, that is, searching a broader region of the 

search-space, and exploitative behaviour, that is, a 

locally oriented search so as to get closer to a 

(possibly local) optimum. This school of thought 

has been prevalent since the inception of 

PSO.[3][4][12][16] This school of thought 

contends that the PSO algorithm and its parameters 

must be chosen so as to properly balance between 

exploration and exploitation to avoid premature 

convergence to a local optimum yet still ensure a 

good rate of convergence to the optimum. This 

belief is the precursor of many PSO variants, see 

below. 

Another school of thought is that the behaviour of a 

PSO swarm is not well understood in terms of how 

it affects actual optimization performance, 

especially for higher-dimensional search-spaces 

and optimization problems that may be 

discontinuous, noisy, and time-varying. This school 

of thought merely tries to find PSO algorithms and 

parameters that cause good performance regardless 

of how the swarm behaviour can be interpreted in 

relation to e.g. exploration and exploitation. Such 

studies have led to the simplification of the PSO 

algorithm, see below. 

Convergence 



In relation to PSO the word convergence typically 

refers to two different definitions: 

Convergence of the sequence of solutions (aka, 

stability analysis, converging) in which all particles 

have converged to a point in the search-space, 

which may or may not be the optimum, 

Convergence to a local optimum where all personal 

bests p or, alternatively, the swarm's best known 

position g, approaches a local optimum of the 

problem, regardless of how the swarm behaves. 

Convergence of the sequence of solutions has been 

investigated for PSO.[15][16][17] These analyses 

have resulted in guidelines for selecting PSO 

parameters that are believed to cause convergence 

to a point and prevent divergence of the swarm's 

particles (particles do not move unboundedly and 

will converge to somewhere). However, the 

analyses were criticized by Pedersen[22] for being 

oversimplified as they assume the swarm has only 

one particle, that it does not use stochastic variables 

and that the points of attraction, that is, the 

particle's best known position p and the swarm's 

best known position g, remain constant throughout 

the optimization process. However, it was 

shown[38] that these simplifications do not affect 

the boundaries found by these studies for parameter 

where the swarm is convergent. Considerable effort 

has been made in recent years to weaken the 

modelling assumption utilized during the stability 

analysis of PSO,[39] with the most recent 

generalized result applying to numerous PSO 

variants and utilized what was shown to be the 

minimal necessary modeling assumptions.[40] 

Convergence to a local optimum has been analyzed 

for PSO in[41] and.[42] It has been proven that 

PSO needs some modification to guarantee finding 

a local optimum. 

 

This means that determining convergence 

capabilities of different PSO algorithms and 

parameters still depends on empirical results. One 

attempt at addressing this issue is the development 

of an "orthogonal learning" strategy for an 

improved use of the information already existing in 

the relationship between p and g, so as to form a 

leading converging exemplar and to be effective 

with any PSO topology. The aims are to improve 

the performance of PSO overall, including faster 

global convergence, higher solution quality, and 

stronger robustness.[43] However, such studies do 

not provide theoretical evidence to actually prove 

their claims. 

Adaptive mechanisms 

Without the need for a trade-off between 

convergence ('exploitation') and divergence 

('exploration'), an adaptive mechanism can be 

introduced. Adaptive particle swarm optimization 

(APSO) [44] features better search efficiency than 

standard PSO. APSO can perform global search 

over the entire search space with a higher 

convergence speed. It enables automatic control of 

the inertia weight, acceleration coefficients, and 

other algorithmic parameters at the run time, 

thereby improving the search effectiveness and 

efficiency at the same time. Also, APSO can act on 

the globally best particle to jump out of the likely 

local optima. However, APSO will introduce new 

algorithm parameters, it does not introduce 

additional design or implementation complexity 

nonetheless. 

Variants 

Numerous variants of even a basic PSO algorithm 

are possible. For example, there are different ways 

to initialize the particles and velocities (e.g. start 

with zero velocities instead), how to dampen the 

velocity, only update pi and g after the entire 

swarm has been updated, etc. Some of these 

choices and their possible performance impact have 

been discussed in the literature.[14] 

A series of standard implementations have been 

created by leading researchers, "intended for use 

both as a baseline for performance testing of 

improvements to the technique, as well as to 

represent PSO to the wider optimization 

community. Having a well-known, strictly-defined 

standard algorithm provides a valuable point of 

comparison which can be used throughout the field 

of research to better test new advances."[10] The 

latest is Standard PSO 2011 (SPSO-2011).[45] 

Hybridization 

New and more sophisticated PSO variants are also 

continually being introduced in an attempt to 

improve optimization performance. There are 

certain trends in that research; one is to make a 

hybrid optimization method using PSO combined 

with other optimizers,[46][47][48] e.g., combined 

PSO with biogeography-based optimization,[49] 

and the incorporation of an effective learning 

method.[43] 

Alleviate premature convergence 

Another research trend is to try and alleviate 

premature convergence (that is, optimization 

stagnation), e.g. by reversing or perturbing the 

movement of the PSO particles,[19][50][51][52] 

another approach to deal with premature 

convergence is the use of multiple swarms[53] 

(multi-swarm optimization). The multi-swarm 

approach can also be used to implement multi-

objective optimization.[54] Finally, there are 



developments in adapting the behavioural 

parameters of PSO during optimization.[44][24] 

Simplifications 

Another school of thought is that PSO should be 

simplified as much as possible without impairing 

its performance; a general concept often referred to 

as Occam's razor. Simplifying PSO was originally 

suggested by Kennedy[4] and has been studied 

more extensively,[18][21][22][55] where it 

appeared that optimization performance was 

improved, and the parameters were easier to tune 

and they performed more consistently across 

different optimization problems. 

Another argument in favour of simplifying PSO is 

that metaheuristics can only have their efficacy 

demonstrated empirically by doing computational 

experiments on a finite number of optimization 

problems. This means a metaheuristic such as PSO 

cannot be proven correct and this increases the risk 

of making errors in its description and 

implementation. A good example of this[56] 

presented a promising variant of a genetic 

algorithm (another popular metaheuristic) but it 

was later found to be defective as it was strongly 

biased in its optimization search towards similar 

values for different dimensions in the search space, 

which happened to be the optimum of the 

benchmark problems considered. This bias was 

because of a programming error, and has now been 

fixed.[57] Initialization of velocities may require 

extra inputs. The Bare Bones PSO variant[58] has 

been proposed in 2003 by James Kennedy, and 

does not need to use velocity at all. Another 

simpler variant is the accelerated particle swarm 

optimization (APSO),[59] which also does not need 

to use velocity and can speed up the convergence in 

many applications. A simple demo code of APSO 

is available.[60] 

 

Multi-objective optimization 

PSO has also been applied to multi-objective 

problems,[61][62][63] in which the objective 

function comparison takes Pareto dominance into 

account when moving the PSO particles and non-

dominated solutions are stored so as to approximate 

the pareto front. 

Binary, discrete, and combinatorial 

As the PSO equations given above work on real 

numbers, a commonly used method to solve 

discrete problems is to map the discrete search 

space to a continuous domain, to apply a classical 

PSO, and then to demap the result. Such a mapping 

can be very simple (for example by just using 

rounded values) or more sophisticated.[64] 

However, it can be noted that the equations of 

movement make use of operators that perform four 

actions:computing the difference of two positions. 

The result is a velocity (more precisely a 

displacement)multiplying a velocity by a numerical 

coefficient 

adding two velocities applying a velocity to a 

position 

Usually a position and a velocity are represented by 

n real numbers, and these operators are simply -, *, 

+, and again +. But all these mathematical objects 

can be defined in a completely different way, in 

order to cope with binary problems (or more 

generally discrete ones), or even combinatorial 

ones.[65][66][67][68] One approach is to redefine 

the operators based on sets 

Method of Regulation 

 The requested torque and pitch controls have been 

implemented in the straightforward block diagram 

format of Simulink, thanks to the MATLABR 

interface we built between FAST and Simulink. 

Figure 2 shows the open-loop FAST simulink 

model. 

 

Figure 2. Simulink open-loop model. 

 

The next sections present the proposed nonlinear 

dynamic torque and linear pitch controller designs. 

Calculation Outcomes  

FAST on MATLAB-Simulink was used to validate 

the NREL WP 1.5 MW wind turbine numerically. 

Table 1 summarizes the main features of wind 

turbines. 

Table 1. Wind Turbine Characteristics. 



 

The wind inflow for the simulations is shown in 

Figure 3. A variable reference set point is imposed 

on the WT electrical power. When the wind park 

manager requires a given electrical power, he/she 

must dispatch this reference over different wind 

turbines and impose a variable reference for each 

turbine to meet a specific request for the grid. This 

wind inflow, for the simulated NREL WP 1.5-MW 

wind turbine, reaches wind speeds that are above 

the rated power operating conditions. From Figure 

3, the rated windspeed for the wind turbine is 11.8 

m/s, which coincides with the mean wind speed 

profile. Figure 3 also shows the reference power 

(right y-axes).  

 

Figure 3. Wind speed profile with a mean of 11.8 m/s that 

corresponds to the rated wind speed of the WT (left y-axes). 

Reference power (right y-axes). 

Managed Torque and Pitch With a = 1, Kp = 1, Ki 

= 1, and two values for K (different settling times), 

the FAST simulator calculates the torque and pitch 

control outputs. Specifically, these findings are 

contrasted with those obtained using the controllers 

suggested in [10] (Bukhezzar's controller) and [11] 

(Jonkman's controller). As can be seen in Figure 4, 

the rotor speed is very close to the nominal value 

(20 rpm) for all of the tested controllers as a result 

of the pitch control operation. As can be seen in 

Figure 5, when the reference electrical power is 

altered, an exponential convergence is seen with 

the Boukhezzar controller, and the target value is 

attained in about 5 seconds. However, as will be 

demonstrated below, the Jonkman controller 

achieves almost flawless power regulation at the 

expense of producing excessive loads that may 

easily outstrip the design load. Our suggested 

controller exhibits characteristics between those of 

Jonkman's and Boukhezzar's. When the parameter 

K = 1.5 106, the electrical power tracks the 

reference with a settling time of one second, as 

predicted [see Equation (10)]. Using K = 1.5 105 

yields the same results, although with a lengthened 

settling period. To get a controller that is more in 

line with Jonkman's or Boukhezzar's, ours permits 

the settling time to be chosen. Our controller has 

limited convergence; thus it takes longer time than 

the Boukhezzar's controller to get to the reference 

power. Figure 5 (in its enlarged form) shows this 

pattern. 

 

 

Figure 4. Rotor speed. 

 

Figure 5. Power output. 

Typical maximum pitch rates range from 18◦ /s for 

600 kW research turbines to 8 ◦ /s for 5 MW 

turbines [23]. From Figure 6, for all the tested 

controllers, the blade pitch angle is always within 

the authorized variation domain without exceeding 

a variation of 10◦ /s. 



 

Figure 6. Pitch control. 

Similar to the results achieved by the Jonkman and 

Boukhezzar controllers, the torque action of the 

suggested controller is smooth and suitable values 

are attained. Depending on the load, the generator 

may not be able to provide the required amount of 

electro-mechanical torque.  

Conclusions  

This research presents a WT controller optimized 

for use in high-turbulence wind environments. 

Strong performances in rotor speed and electrical 

power management are achieved with satisfactory 

control activity using the suggested controller. 

These findings demonstrate that the suggested 

controller enables a range of setpoints for the 

power provided by a WT. This success implies that 

WT power production can be scaled up or down in 

response to the network's power consumption and 

that WTs can take part in primary grid frequency 

control, allowing for a greater percentage of wind 

to be incorporated into electric networks without 

compromising on the quality of the generated 

electric power. Finally, we detail how the 

suggested controller is superior than the previously 

tested methods. • The suggested controller 

guarantees stability over limited intervals of time. 

Therefore, in comparison to exponentially stable 

controllers like [10], the suggested controller 

becomes closer to the target power 

reference.Settling time may be adjusted in the 

proposed controller by adjusting the values of a and 

K in Equation (4). Our controller's tuning allows 

for the production of intermediate controllers with 

settling times between those of the Jonkman and 

Boukhezzar controllers. 
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